基于GPT3.5实现本地知识库解决方案-利用向量数据库和GPT向量接口-实现智能回复并限制ChatGPT回答的范围

闪电发卡2年前ChatGPT1443

标题有点长,但是基本也说明出了这篇文章的主旨,那就是利用GPT AI智能回答自己设置好的问题

既能实现自己的AI知识库机器人,又能节省ChatGPT调用的token成本费用。

代码仓库地址

document.ai: 基于GPT3.5的通用本地知识库解决方案 (gitee.com)


下面图片是整个流程:

导入知识库数据

利用openai的向量接口生成向量数据,然后导入到向量数据库qdrant

这段代码会将指定目录下的所有文件读取出来,然后将文件中的文本内容进行分割,分割后的结果会被传入到 

to_embeddings函数中,该函数会使用 OpenAI 的 API 将文本内容转换为向量。最后,将向量和文件名、文件内容一起作为一个文档插入到 Qdrant 数据库中。

具体来说,这段代码会遍历 ./source_data目录下的所有文件,对于每个文件,它会读取文件内容,然后将文件内容按照 #####进行分割

分割后的结果会被传入到 to_embeddings函数中。

to_embeddings函数会使用 OpenAI 的 API 将文本内容转换为向量,最后返回一个包含文件名、文件内容和向量的列表。

接下来,将向量和文件名、文件内容一起作为一个文档插入到 Qdrant 数据库中。

其中,count变量用于记录插入的文档数量,client.upsert函数用于将文档插入到 Qdrant 数据库中。

需要在目录里创建.env文件,里面放OPENAI_API_KEY

OPENAI_API_KEY=sk-Zxxxxxxxxddddddddd

from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.http.models import PointStruct
from dotenv import load_dotenvimport osimport tqdmimport openai


def to_embeddings(items):
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=items[1]
    )
    return [items[0], items[1], sentence_embeddings["data"][0]["embedding"]]if __name__ == '__main__':
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    load_dotenv()
    openai.api_key = os.getenv("OPENAI_API_KEY")
    # 创建collection
    client.recreate_collection(
        collection_name=collection_name,
        vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
    )

    count = 0
    for root, dirs, files in os.walk("./source_data"):
        for file in tqdm.tqdm(files):
            file_path = os.path.join(root, file)
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
                parts = text.split('#####')
                item = to_embeddings(parts)
                client.upsert(
                    collection_name=collection_name,
                    wait=True,
                    points=[
                        PointStruct(id=count, vector=item[2], payload={"title": item[0], "text": item[1]}),
                    ],
                )
            count += 1

查询知识库数据

这是一个基于flask的web应用,主要功能是根据用户输入的问题,从Qdrant中搜索相关的文本,然后使用openai的ChatCompletion API进行对话生成,最后将生成的回答返回给用户。

from flask import Flask
from flask import render_template
from flask import request
from dotenv import load_dotenv
from qdrant_client import QdrantClientimport openaiimport os

app = Flask(__name__)def prompt(question, answers):
    """
    生成对话的示例提示语句,格式如下:    demo_q:
    使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"成人头疼,流鼻涕是感冒还是过敏?"
    1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。    2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。    demo_a:
    成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。    system:
    你是一个医院问诊机器人    """
    demo_q = '使用以下段落来回答问题:"成人头疼,流鼻涕是感冒还是过敏?"\n1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。\n2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。'
    demo_a = '成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。'
    system = '你是一个医院问诊机器人'
    q = '使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"'
    q += question + '"'
    # 带有索引的格式    for index, answer in enumerate(answers):
        q += str(index + 1) + '. ' + str(answer['title']) + ': ' + str(answer['text']) + '\n'

    """    system:代表的是你要让GPT生成内容的方向,在这个案例中我要让GPT生成的内容是医院问诊机器人的回答,所以我把system设置为医院问诊机器人
    前面的user和assistant是我自己定义的,代表的是用户和医院问诊机器人的示例对话,主要规范输入和输出格式
    下面的user代表的是实际的提问    """
    res = [
        {'role': 'system', 'content': system},
        {'role': 'user', 'content': demo_q},
        {'role': 'assistant', 'content': demo_a},
        {'role': 'user', 'content': q},
    ]
    return res


def query(text):
    """
    执行逻辑:
    首先使用openai的Embedding API将输入的文本转换为向量
    然后使用Qdrant的search API进行搜索,搜索结果中包含了向量和payload
    payload中包含了title和text,title是疾病的标题,text是摘要
    最后使用openai的ChatCompletion API进行对话生成    """
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    load_dotenv()
    openai.api_key = os.getenv("OPENAI_API_KEY")
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=text    )
    """
    因为提示词的长度有限,所以我只取了搜索结果的前三个,如果想要更多的搜索结果,可以把limit设置为更大的值    """
    search_result = client.search(
        collection_name=collection_name,
        query_vector=sentence_embeddings["data"][0]["embedding"],
        limit=3,
        search_params={"exact": False, "hnsw_ef": 128}
    )
    answers = []
    tags = []

    """
    因为提示词的长度有限,每个匹配的相关摘要我在这里只取了前300个字符,如果想要更多的相关摘要,可以把这里的300改为更大的值    """    for result in search_result:
        if len(result.payload["text"]) > 300:
            summary = result.payload["text"][:300]
        else:
            summary = result.payload["text"]
        answers.append({"title": result.payload["title"], "text": summary})

    completion = openai.ChatCompletion.create(
        temperature=0.7,
        model="gpt-3.5-turbo",
        messages=prompt(text, answers),
    )

    return {
        "answer": completion.choices[0].message.content,
        "tags": tags,
    }@app.route('/')def hello_world():
    return render_template('index.html')@app.route('/search', methods=['POST'])def search():
    data = request.get_json()
    search = data['search']

    res = query(search)

    return {
        "code": 200,
        "data": {
            "search": search,
            "answer": res["answer"],
            "tags": res["tags"],
        },
    }if __name__ == '__main__':
    app.run(host='0.0.0.0', port=3000)



闪电发卡ChatGPT产品推荐:

ChatGPT独享账号:https://www.chatgptzh.com/post/86.html

ChatGPT Plus共享账号:https://www.chatgptzh.com/post/319.html

ChatGPT Plus独享账号(购买充值代充订阅):https://www.chatgptzh.com/post/306.html

ChatGPT APIKey购买充值(直连+转发):https://www.chatgptzh.com/post/305.html

ChatGPT Plus国内镜像逆向版:https://www.chatgptzh.com/post/312.html

ChatGPT国内版(AIChat):https://www.chatgptzh.com/post/318.html


相关文章

keyimage.jpg

利用ChatGPT背后的AI加速药物发现 - 每天可筛选1亿种化合物

通过将语言模型应用于蛋白质与药物的相互作用,研究人员可以快速筛选大量的潜在药物化合物库。巨大的药物化合物库可能拥有治疗各种疾病的潜力,如癌症或心脏病。理想情况下,科学家们希望通过实验对这些化合物中的每...

适用于 PHP 应用程序的 GPT-4 和 GPT-3.5 ChatGPT API 客户端

适用于 PHP 应用程序的 GPT-4 和 GPT-3.5 ChatGPT API 客户端

添加图片注释,不超过 140 字(可选)自从去年 10 月发布OpenAI PHP API 客户端以来,我们已经看到成千上万的用户使用 OpenAI API 构建了一些令人惊叹的应用程序。在此期间,O...

GPT-4免费无限制使用教程,ChatGPT4.0免费使用工具推荐

GPT-4免费无限制使用教程,ChatGPT4.0免费使用工具推荐

你还在为开通Chat GPT账号苦恼吗 你还在为不能访问的问题苦恼吗 你还在为访问次数及速度苦恼吗今天推荐的这个工具对于这些问题都不是问题,基于GPT-4(官网是这样介绍的,但是有人通过对话让它回答模...

如何使用ChatGPT4编程提升研发效率:ChatGPT常见编程辅助场景案例举例

如何使用ChatGPT4编程提升研发效率:ChatGPT常见编程辅助场景案例举例

ChatGPT4 相比 ChatGPT3.5 在逻辑推理能力上有了很大的进步,他的代码生成能力更是让我非常震撼,因此我尝试在工作中某些不涉密的基础工作应用 ChatGPT4 来提升研发效率,简单尝试之...

ChatGPT不懂幽默,25个笑话来回讲千次,查重率达90%

ChatGPT不懂幽默,25个笑话来回讲千次,查重率达90%

智东西6月15日消息,据外媒Ars Technica报道,上周三,两位德国研究人员发表了一篇论文,研究了基于GPT-3.5的ChatGPT幽默理解与生成能力。他们发现ChatGPT的幽默能力相当有限:...

ChatGPT产品原理深度介绍,以及社会各界将如何应对

ChatGPT产品原理深度介绍,以及社会各界将如何应对

3月15日凌晨1点,OpenAI宣布正式推出ChatGPT4.0,这是其AI语言模型系列中的最新产品,也向全球科技界投下了一枚核弹。第二天,百度文心一言发布,承载着中国生成式AI产品的希望,但是正如百...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。