基于GPT3.5实现本地知识库解决方案-利用向量数据库和GPT向量接口-实现智能回复并限制ChatGPT回答的范围

闪电发卡1年前ChatGPT1342

标题有点长,但是基本也说明出了这篇文章的主旨,那就是利用GPT AI智能回答自己设置好的问题

既能实现自己的AI知识库机器人,又能节省ChatGPT调用的token成本费用。

代码仓库地址

document.ai: 基于GPT3.5的通用本地知识库解决方案 (gitee.com)


下面图片是整个流程:

导入知识库数据

利用openai的向量接口生成向量数据,然后导入到向量数据库qdrant

这段代码会将指定目录下的所有文件读取出来,然后将文件中的文本内容进行分割,分割后的结果会被传入到 

to_embeddings函数中,该函数会使用 OpenAI 的 API 将文本内容转换为向量。最后,将向量和文件名、文件内容一起作为一个文档插入到 Qdrant 数据库中。

具体来说,这段代码会遍历 ./source_data目录下的所有文件,对于每个文件,它会读取文件内容,然后将文件内容按照 #####进行分割

分割后的结果会被传入到 to_embeddings函数中。

to_embeddings函数会使用 OpenAI 的 API 将文本内容转换为向量,最后返回一个包含文件名、文件内容和向量的列表。

接下来,将向量和文件名、文件内容一起作为一个文档插入到 Qdrant 数据库中。

其中,count变量用于记录插入的文档数量,client.upsert函数用于将文档插入到 Qdrant 数据库中。

需要在目录里创建.env文件,里面放OPENAI_API_KEY

OPENAI_API_KEY=sk-Zxxxxxxxxddddddddd

from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.http.models import PointStruct
from dotenv import load_dotenvimport osimport tqdmimport openai


def to_embeddings(items):
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=items[1]
    )
    return [items[0], items[1], sentence_embeddings["data"][0]["embedding"]]if __name__ == '__main__':
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    load_dotenv()
    openai.api_key = os.getenv("OPENAI_API_KEY")
    # 创建collection
    client.recreate_collection(
        collection_name=collection_name,
        vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
    )

    count = 0
    for root, dirs, files in os.walk("./source_data"):
        for file in tqdm.tqdm(files):
            file_path = os.path.join(root, file)
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
                parts = text.split('#####')
                item = to_embeddings(parts)
                client.upsert(
                    collection_name=collection_name,
                    wait=True,
                    points=[
                        PointStruct(id=count, vector=item[2], payload={"title": item[0], "text": item[1]}),
                    ],
                )
            count += 1

查询知识库数据

这是一个基于flask的web应用,主要功能是根据用户输入的问题,从Qdrant中搜索相关的文本,然后使用openai的ChatCompletion API进行对话生成,最后将生成的回答返回给用户。

from flask import Flask
from flask import render_template
from flask import request
from dotenv import load_dotenv
from qdrant_client import QdrantClientimport openaiimport os

app = Flask(__name__)def prompt(question, answers):
    """
    生成对话的示例提示语句,格式如下:    demo_q:
    使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"成人头疼,流鼻涕是感冒还是过敏?"
    1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。    2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。    demo_a:
    成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。    system:
    你是一个医院问诊机器人    """
    demo_q = '使用以下段落来回答问题:"成人头疼,流鼻涕是感冒还是过敏?"\n1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。\n2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。'
    demo_a = '成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。'
    system = '你是一个医院问诊机器人'
    q = '使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"'
    q += question + '"'
    # 带有索引的格式    for index, answer in enumerate(answers):
        q += str(index + 1) + '. ' + str(answer['title']) + ': ' + str(answer['text']) + '\n'

    """    system:代表的是你要让GPT生成内容的方向,在这个案例中我要让GPT生成的内容是医院问诊机器人的回答,所以我把system设置为医院问诊机器人
    前面的user和assistant是我自己定义的,代表的是用户和医院问诊机器人的示例对话,主要规范输入和输出格式
    下面的user代表的是实际的提问    """
    res = [
        {'role': 'system', 'content': system},
        {'role': 'user', 'content': demo_q},
        {'role': 'assistant', 'content': demo_a},
        {'role': 'user', 'content': q},
    ]
    return res


def query(text):
    """
    执行逻辑:
    首先使用openai的Embedding API将输入的文本转换为向量
    然后使用Qdrant的search API进行搜索,搜索结果中包含了向量和payload
    payload中包含了title和text,title是疾病的标题,text是摘要
    最后使用openai的ChatCompletion API进行对话生成    """
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    load_dotenv()
    openai.api_key = os.getenv("OPENAI_API_KEY")
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=text    )
    """
    因为提示词的长度有限,所以我只取了搜索结果的前三个,如果想要更多的搜索结果,可以把limit设置为更大的值    """
    search_result = client.search(
        collection_name=collection_name,
        query_vector=sentence_embeddings["data"][0]["embedding"],
        limit=3,
        search_params={"exact": False, "hnsw_ef": 128}
    )
    answers = []
    tags = []

    """
    因为提示词的长度有限,每个匹配的相关摘要我在这里只取了前300个字符,如果想要更多的相关摘要,可以把这里的300改为更大的值    """    for result in search_result:
        if len(result.payload["text"]) > 300:
            summary = result.payload["text"][:300]
        else:
            summary = result.payload["text"]
        answers.append({"title": result.payload["title"], "text": summary})

    completion = openai.ChatCompletion.create(
        temperature=0.7,
        model="gpt-3.5-turbo",
        messages=prompt(text, answers),
    )

    return {
        "answer": completion.choices[0].message.content,
        "tags": tags,
    }@app.route('/')def hello_world():
    return render_template('index.html')@app.route('/search', methods=['POST'])def search():
    data = request.get_json()
    search = data['search']

    res = query(search)

    return {
        "code": 200,
        "data": {
            "search": search,
            "answer": res["answer"],
            "tags": res["tags"],
        },
    }if __name__ == '__main__':
    app.run(host='0.0.0.0', port=3000)



闪电发卡ChatGPT产品推荐:

ChatGPT独享账号:https://www.chatgptzh.com/post/86.html

ChatGPT Plus共享账号:https://www.chatgptzh.com/post/319.html

ChatGPT Plus独享账号(购买充值代充订阅):https://www.chatgptzh.com/post/306.html

ChatGPT APIKey购买充值(直连+转发):https://www.chatgptzh.com/post/305.html

ChatGPT Plus国内镜像逆向版:https://www.chatgptzh.com/post/312.html

ChatGPT国内版(AIChat):https://www.chatgptzh.com/post/318.html


相关文章

应用企业搜索的市场巨变——ChatGPT撬动百亿级应用搜索的AIGC市场

应用企业搜索的市场巨变——ChatGPT撬动百亿级应用搜索的AIGC市场

我们刚刚经历的不可思议的一周。本周,再次迎来了Open AI的另一个王炸。我们先来看一下简单的新闻稿:北美时间3月23日,Open AI在官网宣布推出ChatGPT插件功能,同时开源知识库检索插件源代...

会计行业的AI革命:ChatGPT在财务规划中的实际应用案例

大家好,今天我要和大家聊聊一个非常有趣的话题——会计行业的AI革命,特别是ChatGPT在财务规划中的实际应用案例。你可能会问,AI和会计能有什么关系?其实,AI已经悄悄地进入了我们的生活,甚至在我们...

ChatGPT如何改变人工智能教育的面貌

大家好,欢迎来到我的博客!今天,我们来聊聊一个非常有趣且重要的话题——ChatGPT如何改变人工智能教育的面貌。相信很多朋友对人工智能(AI)已经不再陌生,而ChatGPT作为其中的佼佼者,正悄然改变...

如何通过ChatGPT提高医疗机构的运营效率

在当今社会,医疗机构面临着前所未有的挑战。人口老龄化、疾病谱变化、医疗技术的快速进步,都对医疗服务提出了更高的要求。然而,在这些挑战中,也蕴藏着巨大的机遇。人工智能,特别是ChatGPT,正成为提升医...

AI聊天机器人ChatGPT如何改变营销行业

在数字化时代的浪潮中,人工智能(AI)逐渐成为许多行业的重要工具,营销行业也不例外。作为一种先进的AI技术,聊天机器人ChatGPT正在彻底改变传统的营销方式,使之更加高效、个性化和数据驱动。今天,我...

ChatGPT真的可以帮你月入百万吗?

ChatGPT真的可以帮你月入百万吗?

自ChatGPT这个软件爆火以来,相信很多朋友都在网上看到过有人利用ChatGPT做到月入百万,那么到底是真的还是假的呢?我们今天来分析一下。ChatGPTChatGPT,美国OpenAI研发的聊天机...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。