在云服务器上搭建个人版ChatGPT及后端Spring Boot集成ChatGPT

闪电发卡1年前ChatGPT1187

一、国内服务器上搭建chat GPT

首先,你需要准备以下东西:

1、一台可以访问公网的Linux云服务器,最低配置1核2G即可(当然,有钱可以任性,买最高配置)

2、ChatGPT的密钥

3、开源的仿ChatGPT的Docker镜像



1.1、准备一台云服务器

可以是腾讯云、阿里云或者华为云等,我分别在阿里云和华为云上都能正常搭建。

1.2、设置网络代理

在部署魔法访问的服务器上,需要在/etc/profile增加代理,确保通过密钥方式的ChatGPT接口调用能正常访问:

export all_proxy=http://127.0.0.1:8889
export http_proxy=http://127.0.0.1:8889
export https_proxy=https://127.0.0.1:8889
export all_proxy=socks5://127.0.0.1:1080

这里的8889和1080需要根据你的魔法访问里的config.json来相应设置。

配置完成后,执行source /etc/profile,检验一下curl https://api.openai.com/
可以访问即没问题。可以继续往下走。


1.3、安装Docker

搭建完成后,因为Docker的对外访问若需要走所在宿主的代理话,还需要设置以下操作——

创建一个~/.docker/目录,然后在该目录下新建一个config.json文件,在该文件里添加以下命令——

{
   "default":
   {
     "httpProxy": "http://127.0.0.1:8889",     "httpsProxy": "http://127.0.0.1:8889",     "noProxy": "*.test.example.com,.example2.com,127.0.0.0/8"
   }
 }}


1.4、Docker镜像

目前网上GitHub已经开源了许多优秀的仿写chatGPT 页面的应用,我们无需再额外造轮子,只需要挑选其中一款用来打包部署成Docker容器运行即可。

我使用的是chatgpt-mirror这个开源项目。

直接克隆项目到对应的Linux服务器——

git clone https://github.com/yuezk/chatgpt-mirror.git

在基于该开源项目以Dockerfile形式打包前,需要执行以下被依赖到的镜像——

docker pull node:18-alpine 
docker pull node:18-slim

接下来,就可以执行以下操作来创建一个Docker镜像了——

cd chatgpt-mirror#--network host表示与宿主公用网络,即走代理,然后留意下最后有一个 .docker build --network host  -t chatgpt-mirror . #正常执行成功后,通过该指令能看到一个新镜像docker images

具体情况如下:

image

然后需要在cd chatgpt-mirror环境里新增一个文件env,该文件里写入chatGPT密钥与宿主机器的代理:

OPENAI_API_KEY=你的chatGPT密钥
HTTP_PROXY=http://127.0.0.1:8889

完成以上操作后,最后在该目录chatgpt-mirror里执行——

docker run -itd --net host -p 3000:3000 -v /app/config.json:/app/config/app.config --env-file env chatgpt-mirror

正常执行完成后,即可在浏览上输入http://你的服务器ip:3000,就能出来一个外表仿chatGPT但内在是调用真实chatGPT接口的应用。

重点是,如此一来,你的电脑、平台、手机等终端都无需魔法访问,就能直接使用chatGPT了,而且响应速度比直连官网快一倍左右速度,无比丝滑!而且,没有像chatGPT官网直连那样经常出现响应异常以及断开的问题,协助效率大大增加。

以下就是访问搭建在我自己服务器上的chatGPT页面,是不是跟真实的很像。

image


二、后端Spring Boot集成chat GPT

注意,该方式同样需要魔法访问。

首先,在maven依赖引入以下配置——

<dependency>
    <groupId>com.theokanning.openai-gpt3-java</groupId>
    <artifactId>service</artifactId>
    <version>0.11.1</version></dependency>

编写以下代码——

@GetMapping("/ai")public void sendMsg() throws InterruptedException {
    System.out.println("开始提问题~");
    System.out.println("你是一个工作助手,情帮忙设计一份活动策划书" );
  //GPT_TOKEN即你的代码密钥
    OpenAiService service = new OpenAiService(GPT_TOKEN,Duration.ofSeconds(10000));
    CompletionRequest completionRequest = CompletionRequest.builder()
      			//使用的模型
            .model("text-davinci-003")
            //输入提示语
            .prompt("设计一份活动策划书")
            //该值越大每次返回的结果越随机,即相似度越小,可选参数,默认值为 1,取值 0-2
            .temperature(0.5)
            //返回结果最大分词数
            .maxTokens(2048)
            //与temperature类似
            .topP(1D)
            .build();
    service.createCompletion(completionRequest).getChoices().forEach(System.out::println);
    Thread.sleep(6000);}

CompletionRequest的属性文档介绍在这里——

https://platform.openai.com/docs/api-reference/completions/create

启动,调用该接口,即可正常使用chat GPT集成到SpringBoot后端代码里——
image

需要注意的是,若是部署在有魔法访问的Linux云服务,代码需要相应做一下调整,否则是无法访问到chatGPT的,会出现以下异常提示:java.net.ConnectException:Failed to connect to api.openai.com/2a03:2880:f10c:283:face:b00c:0:25de:443]

故而,需要做以下调整:

public void send1Msg() throws InterruptedException {

        System.out.println("开始提问题~");
        System.out.println("你是一个工作助手,情帮忙设计一份活动策划书" );
        //需要额外设置一个能访问chatGPT的魔法访问代理
        ObjectMapper mapper = defaultObjectMapper();
        Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress("127.0.0.1", 8889));
        OkHttpClient client =  defaultClient(GPT_TOKEN,Duration.ofSeconds(10000))
                .newBuilder()
                .proxy(proxy)
                .build();
        Retrofit retrofit = defaultRetrofit(client, mapper);
        OpenAiApi api = retrofit.create(OpenAiApi.class);

				//将设置的代理传给OpenAiService即可
        OpenAiService service = new OpenAiService(api);
        CompletionRequest completionRequest = CompletionRequest.builder()
                .model("text-davinci-003")
                .prompt("设计一份活动策划书")
                .temperature(0.5)
                .maxTokens(2048)
                .topP(1D)
                .build();
        service.createCompletion(completionRequest).getChoices().forEach(System.out::println);
        Thread.sleep(6000);}

部署在Linux云服务上的聊天返回打印效果——

image

以上就是关于【国内服务器上搭建chat GPT】和【后端Spring Boot集成chat GPT】教程,更多好玩的关于chat GPT相关的内容,可以关注我,因为我对这块很感兴趣,接下来会分享更多相关内容。有不懂的也可以后台问我。


相关文章

解密Prompt系列:升级Instruction Tuning:Flan/T0/InstructGPT/TKInstruct

解密Prompt系列:升级Instruction Tuning:Flan/T0/InstructGPT/TKInstruct

这一章我们聊聊指令微调,哈哈只要你细品,你就会发现大家对prompt和instruction的定义存在些出入,部分认为instruction是prompt的子集,部分认为instruction是句子类...

ChatGPT产品原理深度介绍,以及社会各界将如何应对

ChatGPT产品原理深度介绍,以及社会各界将如何应对

3月15日凌晨1点,OpenAI宣布正式推出ChatGPT4.0,这是其AI语言模型系列中的最新产品,也向全球科技界投下了一枚核弹。第二天,百度文心一言发布,承载着中国生成式AI产品的希望,但是正如百...

ChatGPT国内镜像中文版常见问题解答:让你快速上手

闪电发卡ChatGPT产品推荐:ChatGPT独享账号:https://www.chatgptzh.com/post/86.htmlChatGPT Plus独享共享账号购买代充:https://www...

如何利用ChatGPT提升客户参与度和营销效果

在当今的数字化时代,客户参与度和营销效果是每个企业成功的关键因素。然而,如何在竞争激烈的市场中脱颖而出,吸引和保留客户,却是一个不小的挑战。幸运的是,随着人工智能技术的发展,特别是像ChatGPT这样...

掌握ChatGPT Prompt 编写艺术:从入门到精通

大家好,欢迎来到我的博客,今天我们来聊聊一个非常有趣的话题——如何掌握ChatGPT Prompt编写的艺术。从初学者到精通,这是一门让人欲罢不能的技巧。在现代信息时代,自动化生成内容不仅提高了工作效...

推荐脚本:ChatGPT提示选择器,可以帮助用户生成Prompt

推荐脚本:ChatGPT提示选择器,可以帮助用户生成Prompt

🤖一个帮助用户在ChatGPT原生网页快速选择 ChatGPT 提示"Prompt"的脚本。🤖ChatGPT - 提示选择器该用户脚本旨在帮助 ChatGPT 用户快速选择提示。它...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。